Federated Learning은 로컬 데이터 샘플을 보유한 여러 분산형 edge device 또는 server에서 모델을 교환하지 않고도 학습할 수 있는 머신 러닝 접근 방식이다. 중앙 서버와 같은 한 곳에서 모든 데이터를 수집하는 대신 데이터가 저장된 곳으로 모델을 보내 로컬에서 학습한 다음 학습한 내용(예: model updates 또는 gradients)만 중앙 서버나 aggregator로 다시 보낸다. 이 프로세스는 원시 데이터가 디바이스를 벗어나지 않고 집계된 insight만 공유되므로 사용자 개인정보를 보호하는 데 도움이 된다. 특히 의료(환자 데이터), 금용(거래 기록) 또는 IoT(사물 인터넷) 디바이스와 같이 데이터 개인 정보 보호가 중요한 시나리오에서 유용하다. 또한 네트워크를 통해..
Hidden Markov Model의 몇 가지 용어에 대해 알아보자. Emission Probability (Observation Probability, 방출 확률, 관측 확률) : Hidden state (variables, 변수)를 관측 변수(observation variables)와 연관시키는 것으로, 특정 hidden state가 주어졌을 때 특정 visible state (obsevation, 관측)를 관찰할 확률을 의미 Prior Probability (사전 확률) : observation (관측)을 보기 전에 특정 상태에 있을 화률 (HMM의 맥락에서 초기 상태 분포(initial state distribution)라고도 함) Transition Probability (전환 확률) : 한 h..
N-Gram Language Model에서 발견되지 않은 n-gram에 대한 확률 0을 다루는 두 가지 기술에 대해 알아보자. 두 전략 모두 가능한 모든 n-gram이 0이 아닌 확률을 갖도록 하여 Language Model의 견고성(robustness)와 정확성(accuracy)를 향상시키도록 설계되었으며, 이는 학습 데이터가 희소하거나 불완전한 경우에 유용하다. backoff는 데이터가 누락된 경우 더 간단한 모델로 단계적으로 축소하는 방법을 제공하며, interpolation은 다양한 모델 복잡성의 정보를 혼합해 더 많은 정보를 바탕으로 예측할 수 있도록 한다. Backoff : 이 전략은 모델이 학습 데이터에서 볼 수 없었던 n-gram을 발견할 때 사용된다. 확률을 0으로 할당하는 대신, 모델은..
Word Embeddings의 구체적인 예시와 어떻게 사용되는지를 알아보자. 구체적 예시 Word2Vec : "king", "queen", "man", "woman" 라는 단어가 있다고 가정해보자. 학습된 Word2Vec 모델에서 Embedding은 다음와 같이 나타낼 수 있다. "king": [0.2, -0.1, 0.4] "queen": [0.21, -0.09, 0.41] "man": [-0.4, 0.3, -0.1] "woman": [-0.39, 0.31, -0.09] "king"과 "queen"이 "man"과 "woman"과 마찬가지로 유사한 벡털르 가지고 있음을 알 수 있다. GloVe :"computer", "keyboard", "flower", "rose" 라는 단어가 있다고 가정해보자. 이는 ..
Word Embeddings은 비슷한 의미를 가진 단어들이 비슷한 표현을 갖도록 하는 단어 표현의 한 유형이다. 이는 ML 알고리즘이 처리할 수 있도록 텍스트 데이터를 숫자 형식으로 변환하는 NLP의 기본 테크닉이다. 설명 Numerical Represenatation (숫자 표현) : Word Embeddings은 단어를 실수 벡터로 변환한다. 어휘의 각 단어는 고차원 공간(일반적으로 수백 차원)의 벡터에 매핑된다. Capturing Semantic Meaning (의미론적 포착) : 이러한 벡터는 단어의 의미를 포착하도록 설계돼있다. 비슷한 문맥에서 사용되는 단어는 비슷한 Embedding을 갖는 경향이 있다. 예를 들어, "king"과 "queen"은 Embedding 공간에서 가깝다. Contex..
RNN(Recurrent Neural Network)과 POS (Part-of-speech) tagging의 관계에 대해 알아보자. 순차적 데이터 모델링 : RNN은 특히 NLP의 문장과 같이 순차적 데이터를 포함하는 작업에 적합하다. POS tagging은 본질적으로 시쿼스(또는 문장)의 각 단어에 tag가 할당되는 sequence labeling 작업이다. 컨텍스트 인식 : POS tagging에 RNN을 사용할 때의 주요 이점 중 하나는 숨겨진 상태(hidden state)를 통해 컨텍스트를 유지할 수 있다는 점이다. 이를 통해 POS tag를 할당할 때 문장 내 단어의 문맥을 고려할 수 있으며, 이는 문맥에 따라 여러 단어가 서로 다른 tag를 가질 수 있기 때문에 매우 중요하다. End-to-e..
RNN 또는 순환 신경망은 시계열(time series, 일정 시간 간격으로 배치된 데이터들의 수열), 주식 가격 및 NLP 텍스트와 같은 데이터 시퀀스에서 패턴을 인식하기 위해 설계된 인공 신경망 (Artificial Neural Network)의 한 유형이다. 이러한 네트워크의 "순환, 반복적(recurrent)" 특성은 RNN의 아키텍처에서 비롯되는데, 정보가 지속될 수 있는 루프(loop)를 가지고 있어 입력 데이터 포인트의 순서와 컨텍스트가 중요한 작업에 매우 적합하다. RNN과 관련된 몇 가지 주요 특징 및 개념에 대해 알아보자. Memory Cells (메모리 셀) : Feed-Forward 네트워크와 같은 전통적인 신경망은 이전 입력에 대한 메모리가 없다. 반면, RNN은 메모리 셀을 가지..
NLP에서 POS는 단어가 문법적 기능(syntactic functions)에 따라 할당되는 카테고리를 의미한다. 예를 들어, 영어 문법에서 단어들은 Noun(명사), Verb(동사), Adjective(형용사), Adverb(부사), Pronoun(대명사), Preposition(전치사), Conjunction(접속사), Interjection(감탄사)와 같은 클래스로 분류된다. POS tagging은 텍스트의 각 단어에 해당하는 품사로 표시(labeling)하는 작업이다. 이는 named entity recognition (명명된 엔티티 인식), parsing, sentiment analysys 같은 하위 작업에 유용하다. POS tagging을 위한 다양한 알고리즘과 도구가 있으며, rul-base..
Multinomial Naive Bayes에 대해 다시 한 번 간단히 짚어보고, 예시를 살펴보자. Multinomial Naive Bayes는 불연속 데이터에 적합한 Naive Bayes classifier의 변형으로, 텍스트 분류의 맥락에서 단어 수 또는 TF-IDF score 같은 기능과 함께 자주 사용된다. 문제 : 영화 리뷰를 "Positive"와 "Negative"로 분류 Training Data : "I love this movie. It's amazing!" - Positive "A wonderful film with great characters" - Positive "I really disliked this move." - Nagative "Such a waste of time." - N..
NLP에서 단어, 구문 또는 전체 문서를 벡터로 변화하는 대표적인 기술로 Count Vectorizer, TF-IDF, Word2Vec, GloVe가 있다. 각각에 대해 알아보자. Count Vectorizer (카운트 벡터라이저) 설명 : 텍스트 데이터를 표현하는 방법으로, 각 문서 (또는 텍스트 세그먼트)에 대해 각 단어의 발생 횟수를 계산해 각 요소가 어휘의 단어에 해당하는 벡터로 문서를 표현한다. 벡터의 길이는 어휘의 크기이며, 각 요소의 값은 문서에서 해당 단어의 개수다. 사용 사례 : 텍스트 분류, 클러스터링 등을 위한 고전적인 머신 러닝 모델에서 주로 사용된다. 특징 : 단어 간의 의미론적 의미나 관계를 포착하지 않고, 의미는 비슷하지만 형태가 다른 단어(예: run과 running)는 별개..
- Total
- Today
- Yesterday
- DICTIONARY
- 이코노미스트
- java
- Python
- Android
- C++
- socket programming
- tf-idf
- 이코노미스트 에스프레소
- ml
- 안드로이드
- I2C
- The Economist
- The Economist Espresso
- 티스토리챌린지
- vertex shader
- 투 포인터
- Computer Graphics
- 소켓 프로그래밍
- defaultdict
- 리트코드
- 딕셔너리
- 파이썬
- 머신 러닝
- machine learning
- leetcode
- Hash Map
- min heap
- join
- 오블완
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |